dc.creator |
Du, Xiumin |
|
dc.creator |
Guth, Larry |
|
dc.creator |
Ou, Yumeng |
|
dc.creator |
Wang, Hong |
|
dc.creator |
Wilson, Bobby |
|
dc.creator |
Zhang, Ruixiang |
|
dc.date |
2021-10-27T19:58:08Z |
|
dc.date |
2021-10-27T19:58:08Z |
|
dc.date |
2021 |
|
dc.date |
2021-05-20T14:26:42Z |
|
dc.date.accessioned |
2023-03-01T18:08:03Z |
|
dc.date.available |
2023-03-01T18:08:03Z |
|
dc.identifier |
https://hdl.handle.net/1721.1/134108 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/278877 |
|
dc.description |
© 2021 by Johns Hopkins University Press. We prove some weighted Fourier restriction estimates using polynomial partitioning and refined Strichartz estimates. As application we obtain improved spherical average decay rates of the Fourier transform of fractal measures, and therefore improve the results for the Falconer distance set conjecture in three and higher dimensions. |
|
dc.format |
application/pdf |
|
dc.language |
en |
|
dc.publisher |
Project Muse |
|
dc.relation |
10.1353/ajm.2021.0005 |
|
dc.relation |
American Journal of Mathematics |
|
dc.rights |
Creative Commons Attribution-Noncommercial-Share Alike |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
|
dc.source |
arXiv |
|
dc.title |
Weighted restriction estimates and application to Falconer distance set problem |
|
dc.type |
Article |
|
dc.type |
http://purl.org/eprint/type/JournalArticle |
|