dc.contributor |
Massachusetts Institute of Technology. Department of Mathematics |
|
dc.creator |
Bezrukavnikov, Roman |
|
dc.creator |
Kapustin, Anton |
|
dc.date |
2021-12-17T17:14:46Z |
|
dc.date |
2021-09-20T17:17:12Z |
|
dc.date |
2021-12-17T17:14:46Z |
|
dc.date |
2019-03 |
|
dc.date |
2020-09-24T21:17:59Z |
|
dc.date.accessioned |
2023-03-01T18:06:40Z |
|
dc.date.available |
2023-03-01T18:06:40Z |
|
dc.identifier |
https://hdl.handle.net/1721.1/131471.2 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/278786 |
|
dc.description |
We study the localization properties of the equal-time electron Green’s function in a Chern insulator in an arbitrary dimension and with an arbitrary number of bands. We prove that the Green’s function cannot decay super-exponentially if the Hamiltonian is finite-range and the quantum Hall response is nonzero. For a general band Hamiltonian (possibly infinite-range), we prove that the Green’s function cannot be finite-range if the quantum Hall response is nonzero. The proofs use methods of algebraic geometry. |
|
dc.format |
application/octet-stream |
|
dc.language |
en |
|
dc.publisher |
Springer International Publishing |
|
dc.relation |
https://doi.org/10.1007/s40598-019-00098-8 |
|
dc.rights |
Creative Commons Attribution-Noncommercial-Share Alike |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
|
dc.rights |
Institute for Mathematical Sciences (IMS), Stony Brook University, NY |
|
dc.source |
Springer International Publishing |
|
dc.title |
Localization properties of Chern insulators |
|
dc.type |
Article |
|
dc.type |
http://purl.org/eprint/type/JournalArticle |
|