dc.contributor |
Massachusetts Institute of Technology. Department of Mathematics |
|
dc.contributor |
Charles, Francois |
|
dc.contributor |
Poonen, Bjorn |
|
dc.creator |
Charles, François |
|
dc.creator |
Poonen, Bjorn |
|
dc.creator |
Charles, Francois |
|
dc.date |
2016-09-21T17:55:23Z |
|
dc.date |
2016-09-21T17:55:23Z |
|
dc.date |
2014-10 |
|
dc.date |
2014-09 |
|
dc.date.accessioned |
2023-03-01T18:05:55Z |
|
dc.date.available |
2023-03-01T18:05:55Z |
|
dc.identifier |
0894-0347 |
|
dc.identifier |
1088-6834 |
|
dc.identifier |
http://hdl.handle.net/1721.1/104357 |
|
dc.identifier |
Charles, François, and Bjorn Poonen. “Bertini Irreducibility Theorems over Finite Fields.” Journal of the American Mathematical Society 29, no. 1 (October 31, 2014): 81–94. © 2014 American Mathematical Society. |
|
dc.identifier |
https://orcid.org/0000-0002-8593-2792 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/278738 |
|
dc.description |
Given a geometrically irreducible subscheme $ X \subseteq \mathbb{P}^n_{\mathbb{F}_q}$ of dimension at least $ 2$, we prove that the fraction of degree $ d$ hypersurfaces $ H$ such that $ H \cap X$ is geometrically irreducible tends to $ 1$ as $ d \to \infty $. We also prove variants in which $ X$ is over an extension of $ \mathbb{F}_q$, and in which the immersion $ X \to \mathbb{P}^n_{\mathbb{F}_q}$ is replaced by a more general morphism. |
|
dc.description |
National Science Foundation (U.S.) (Grant DMS-1069236) |
|
dc.format |
application/pdf |
|
dc.language |
en_US |
|
dc.publisher |
American Mathematical Society |
|
dc.relation |
http://dx.doi.org/10.1090/S0894-0347-2014-00820-1 |
|
dc.relation |
Journal of the American Mathematical Society |
|
dc.rights |
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. |
|
dc.source |
American Mathematical Society |
|
dc.title |
Bertini irreducibility theorems over finite fields |
|
dc.type |
Article |
|
dc.type |
http://purl.org/eprint/type/JournalArticle |
|