Sangam: A Confluence of Knowledge Streams

Highest weight modules at the critical level and noncommutative Springer resolution

Show simple item record

dc.contributor Massachusetts Institute of Technology. Department of Mathematics
dc.contributor Bezrukavnikov, Roman
dc.contributor Lin, Qian
dc.creator Bezrukavnikov, Roman
dc.creator Lin, Qian
dc.date 2013-09-23T13:23:52Z
dc.date 2013-09-23T13:23:52Z
dc.date 2012
dc.date 2010-08
dc.date.accessioned 2023-03-01T18:04:40Z
dc.date.available 2023-03-01T18:04:40Z
dc.identifier 9780821853177
dc.identifier 9780821885369
dc.identifier 1098-3627
dc.identifier 0271-4132
dc.identifier http://hdl.handle.net/1721.1/80850
dc.identifier Bezrukavnikov, Roman, and Qian Lin. Highest weight modules at the critical level and noncommutative Springer resolution. American Mathematical Society, 2012.
dc.identifier https://orcid.org/0000-0001-5902-8989
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/278658
dc.description In the article by Bezrukavnikov and Mirkovic a certain non-commutative algebra A was defined starting from a semi-simple algebraic group, so that the derived category of A-modules is equivalent to the derived category of coherent sheaves on the Springer (or Grothendieck-Springer) resolution. Let gˇ be the Langlands dual Lie algebra and let [˄ over g] be the corresponding affine Lie algebra, i.e. [˄ over g] is a central extension of gˇ ⊗ C((t)). Using results of Frenkel and Gaitsgory we show that the category of [˄ over g] modules at the critical level which are Iwahori integrable and have a fixed central character, is equivalent to the category of modules over a central reduction of A. This implies that numerics of Iwahori integrable modules at the critical level is governed by the canonical basis in the K-group of a Springer fiber, which was conjecturally described by Lusztig and constructed by Bezrukavnikov and Mirkovic.
dc.description National Science Foundation (U.S.) (Grant DMS-0854764)
dc.description National Science Foundation (U.S.) (Grant DMS-1102434)
dc.format application/pdf
dc.language en_US
dc.publisher American Mathematical Society
dc.relation http://dx.doi.org/10.1090/conm/565/11188
dc.relation Algebraic Groups and Quantum Groups
dc.rights Creative Commons Attribution-Noncommercial-Share Alike 3.0
dc.rights http://creativecommons.org/licenses/by-nc-sa/3.0/
dc.source arXiv
dc.title Highest weight modules at the critical level and noncommutative Springer resolution
dc.type Article
dc.type http://purl.org/eprint/type/JournalArticle


Files in this item

Files Size Format View
Bezrukavnikov_Highest weight.pdf 236.8Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse