Sangam: A Confluence of Knowledge Streams

Eigenvalue and Eigenvector Analysis of Stability for a Line of Traffic

Show simple item record

dc.contributor Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor Massachusetts Institute of Technology. Department of Mathematics
dc.contributor Horn, Berthold K. P.
dc.contributor Wang, Liang
dc.contributor Strang, W. Gilbert
dc.creator Horn, Berthold K. P.
dc.creator Wang, Liang
dc.creator Strang, W. Gilbert
dc.date 2018-06-25T15:46:24Z
dc.date 2018-06-25T15:46:24Z
dc.date 2016-09
dc.date 2016-05
dc.date 2018-06-20T15:10:12Z
dc.date.accessioned 2023-03-01T08:02:45Z
dc.date.available 2023-03-01T08:02:45Z
dc.identifier 0022-2526
dc.identifier 1467-9590
dc.identifier http://hdl.handle.net/1721.1/116562
dc.identifier Wang, Liang et al. “Eigenvalue and Eigenvector Analysis of Stability for a Line of Traffic.” Studies in Applied Mathematics 138, 1 (September 2016): 103–132 © 2016 Wiley Periodicals, Inc
dc.identifier https://orcid.org/0000-0003-3434-391X
dc.identifier https://orcid.org/0000-0002-9300-1832
dc.identifier https://orcid.org/0000-0001-7473-9287
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/275952
dc.description Many authors have recognized that traffic under the traditional car-following model (CFM) is subject to flow instabilities. A recent model achieves stability using bilateral control (BCM)—by looking both forward and backward [1]. (Looking back may be difficult or distracting for human drivers, but is not a problem for sensors.) We analyze the underlying systems of differential equations by studying their eigenvalues and eigenvectors under various boundary conditions. Simulations further confirm that bilateral control can avoid instabilities and reduce the chance of collisions.
dc.format application/pdf
dc.publisher Wiley-Blackwell
dc.relation http://dx.doi.org/10.1111/SAPM.12144
dc.relation Studies in Applied Mathematics
dc.rights Creative Commons Attribution-Noncommercial-Share Alike
dc.rights http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.source Prof. Strang via Michael Noga
dc.title Eigenvalue and Eigenvector Analysis of Stability for a Line of Traffic
dc.type Article
dc.type http://purl.org/eprint/type/JournalArticle


Files in this item

Files Size Format View
eigenvalue_anlysis_final.pdf 1.837Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse